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1     Introduction 

1.1 Scope 

Video cameras are critical to providing persistent surveillance capabilities for situational aware- 
ness. Currently, video analysis requires significant human supervision. Even many of the rou- 
tine tasks ranging from detecting, identifying, localizing/tracking interesting events, discarding 
irrelevant data, to providing actionable intelligence currently requires significant human super- 
vision. Human supervision is not scalable for providing persistent wide-area monitoring and 
particularly for monitoring a network of cameras that would be generally employed for theater- 
level operations. The scope of this project is to develop new concepts for autonomous video 
analysis for highly cluttered urban environments. 

1.1.1     Goals, Objectives &; Challenges 

We present techniques for autonomous and distributed operation of wide-area camera networks 
for video analysis in unstructured and highly cluttered urban environments. Our goals for video 
analysis are: 

1. Anomaly Detection: Here we are interested in developing novel algorithms for au- 
tonomous real-time detection of suspicious activity. 

2. Search & Retrieval: This task deals with pulling activities of interest in large wide-area 
surveillance video based on analyst generated input query. 

3. Multi-Camera Activity Fusion: In this task we present algorithms for combining 
views from multiple cameras for dynamic scene characterization to improve detection, 
localization and tracking performance 

The main challenges in developing concepts for video analysis is that urban scenarios pro- 
vide a deluge of dynamic data. Identifying relevant information, such as meaningful change 
detection, in urban clutter is not easy. Second, doing so reliably, i.e., with small false alarms 
and missed detections is difficult and possibly impossible in harsh sensing environments (camera 
jitter etc). Third, combining views from multiple cameras for dynamic scene characterization 
and to improve detection, localization and tracking performance is hard. Finally, search and re- 
trieval of activities of interest, indexing events of interest in long videos, is extremely challenging 
not only because of the inherent multi-scale nature of the phenomena. 

1.2 Operational Naval Concept 

Our main objective is to develop an essentially autonomous camera surveillance network in un- 
structured and highly cluttered urban &, littoral environments. The new capabilities will include 
real-time abnormal activity detection, localization and tracking from multi-camera systems, and 
content summarization for fast indexing and search of archived video data. The operational 
performance improvements will include computationally efficient algorithms, demonstration in 
highly cluttered environments and improved ROC curves to improve reliability and robustness. 
The proposed effort deals with several of Navy's S & T focus areas in addition to Automated 
Image Analysis Asymmetric and Irregular Warfare, ISR, and Information Integration & Fusion. 



2 Deliverables &; Outcomes 

The principle deliverable for this 6.1 project is this final report. Apart from this deliverable 
the project has resulted in several noticeable outcomes. 

Transition Path The transition path for this project is towards building an Agile Tactical 
SNET. The search & retrieval concepts developed under this project has generated significant 
interest. To this end this project has led to a new 6.2 project for developing Distributed Search 
Engines for Large Video Stores. The search algorithm finds matches in a hash table and only 
retrieve video segments that meets search criteria. This is useful for remote video stores that 
generate significant data and there is insufficient bandwidth to transmit this data in a timely 
manner. We have partnered with NRL-Stennis to help transition our concepts onto their 
CisView platform. Our transition plan in the new 6.2 project includes code development with 
updates targeted for delivery to ONR each year. 

Papers & Reports This project has produced a number of publications in internationally 
recognized conferences and reputed journals. We have also presented this material in a number 
of universities and parts of this work has appeared as chapters in edited books. We list these 
publications here: 

1. G. Castanon, P.-M Jodoin, V. Saligrama, A. Caron Activity Retrieval in Large Surveil- 
lance Videos, Elsevier E-reference for Signal Processing, 2013 

2. V. Saligrama, Z. Chen, Video Anomaly Detection Based on Local Statistical Aggregates, 
IEEE Computer Vision and Pattern Recognition (CVPR), 2012 

3. G. Castanon, V. Saligrama, P. M. Jodoin, A. Caron, Exploratory Search in Long Surveil- 
lance Videos, ACM Multimedia, 2012 (full paper, acceptance rate: 20 

4. Y. Benezeth, P. Jodoin, V. Saligrama, Abnormality Detection Using Low-Level Co-occurring 
Events, Pattern Recognition Letters, 2011 

5. P.M. Jodoin, V. Saligrama, J. Konrad, Behavior Subtraction: A new tool for Video Ana- 
lytics, IEEE Transactions on Image Processing, Sept 2012 

6. V. Saligrama, J. Konrad, P. M. Jodoin, Video Anomaly Identification, IEEE Signal Proc. 
Magazine, 2011 

7. E. Ermis, P. Clarot, P. M. Jodoin, V. Saligrama, Activity Based Matching in Distributed 
Camera Networks, IEEE Transactions on Image Processing, Sept 2010 

8. E. Ermis, V. Saligrama, P. Jodoin, Information Fusion and Anomaly Detection with Un- 
calibrated Cameras in Surveillance, in Multimedia Information Extraction, M. Maybury 
(eds), IEEE Press, 2012 

9. Y. Benezeth, P. Jodoin, V. Saligrama, Modeling Patterns of Activity and Detecting Ab- 
normal Events with Low Level Co-occurrence of activity, in Distributed Video Sensor 
Networks, Bir Bhanu et. al. (eds), Springer 2011 

3 Detailed Technical Approach & Results 

Video surveillance has been an area of significant interest in both academia and industry. We 
develop a novel event-based framework for anomaly detection, multi-camera fusion and activity 



retrieval. Our approach is based on statistical learning techniques for video analysis. At a 
fundamental level this requires three steps, namely, 

1. Feature Selection fc Extraction: The main goal here is to select descriptors that are not 
only informative but also have sufficiently low complexity such that they are robust, 
relatively easy to extract, and amenable to real-time analysis. For instance, tracks are 
high dimensional features that are difficult to extract in cluttered scenarios. Our goal is 
to select informative low-dimensional features that are robust to photometric properties 
and relative easy to extract. 

2. Feature Modeling: The goal here is to develop probabilistic models to characterize dy- 
namic evolution of features over space and time. 

3. Video analysis: This involves algorithms for anomaly defection, multi-camera fusion and 
retrieval. 

3.1    Anomaly Detection 

Anomaly detection for video surveillance has gained importance [2, 3, 6, 11, f 5, 25, 29, 32, 33, 
35,37,57]. Our focus is on problems, where we are given a set of nominal training videos 
samples. Based on these samples we need to determine whether or not a test video contains 
an anomaly. We consider anomalies in motion attributes. Such outliers can include (un)usual 
motion patterns of (un)usual objects in (un)usual locations. These encompass anomalies such 
as dropped baggage, illegal U-turns, and sudden movements. 

We focus on anomalies that have local spatio-temporal signatures. The work reported 
here has appeared in our CVPR 2012 paper [43]. By locality we mean that the spatio-temporal 
region surrounding the anomalous region appears to follow the nominal activity and carries little 
information about the anomaly itself. For instance, the appearance of a bicyclist as shown in 
Fig. 1 illustrates spatio-temporal locality. As is seen outside a small window in time or in space 
the optical flow magnitudes look remarkably similar to nominal activity. We also consider other 
cases where locality is only temporal. These include cases such as sudden crowd movement [1] 
or illegal U-turns [6] We exploit these ideas by proposing a statistical non-parametric notion 
of locality and derive data-driven rules for anomaly detection with predictable performance 
and statistical guarantees. Our approach is related to a number of other non-parametric data- 
driven approaches such as [46, 63] with important differences. Existing statistical approaches 
do not account for local anomalies, i.e., anomalies that are localized to a small time interval 
and/or spatial region. Our statistical locality notion leads to an elegant characterization of 
anomaly detection and suggests novel empirical rules. A fundamental insight gained from our 
theoretical results is that the optimal decision rules for local anomalies are local irrespective of 
the global statistical dependencies exhibited in the nominal behavior. This key insight implies 
that the inherently large ambient data dimension is inconsequential. Our local empirical rules 
fuse local statistics and produce a composite score for a video segment. Anomalies are declared 
by ranking composite scores for video segments. Our anomaly detection algorithm is described 
in Fig. 2. Our setup extracts local low-level motion descriptors and resembles other common 
approaches. Adam et al. [2] use histograms of optical flows at specific "local monitors" to derive 
decision rules for anomaly detection at those locations. Itti and Baldi consider low-level feature 
descriptors at every location [27] and use possion statistics for modeling nominal activity. 

We propose a joint probability distribution of the low-level motion descriptors under nom- 



Figure 1: Illustration of local anomaly. Top: Illustrates frame of a video segment [35] with anomaly 
(bicycle). Bottom Panel (Left): Optical flow magnitude averaged over the red block vs. frame number 
for nominal and anomalous video segments. (Right): Optical flow magnitude averaged over different 
blocks along horizontal pixel blocks for different nominal and anomalous video segments. 

inal as well as anomalous distributions. Such joint distributions have also been considered 
extensively. Kim et al. [32] also extract local optical flow and enforce consistency across lo- 
cations through Markov Random Field models. Benezeth et al. [6] use binary background 
subtraction to extract motion labels and then model these local features using a 3D Markov 
Random Field (MR.F). Kratz et al. [33] extract spatio-temporal gradient to fit Gaussian model, 
and then use HMM to detect abnormal events. Mahadevan et al. [35] model the normal crowd 
behavior by mixtures of dynamic textures. 

We introduce novel structural assumptions on the joint distributions to account for spatial 
and temporal locality of anomalies. Our locality assumption leads us to consider statistics 
on local 3D brick patches (space-time blocks) across different overlapping locations. These 
statistics are obtained through spatio-temporal filters as shown in Fig. 2. Our 3D modeling 
superficially resembles Boiman and Irani [11] but is different. They consider ensembles of 
3D bricks and derive Gaussian models for matching test ensembles at a specific location with 
corresponding ensembles in a database. However, our goal is statistical and does not attempt to 
match 3D bricks at a location. Rather (see Fig. 7) we first compute location specific K-nearest 
neighbor (NN) distance for each 3D brick. We then normalize and compute a composite score 
by aggregating weighted K-NN distances from all the locations. This composite score is ranked 
against other such composite scores associated with training video segments. We then declare 
low scores as anomalies. It turns out that fusing local 3D brick statistics in this manner has 
theoretical significance. The empirical composite scoring and ranking scheme asymptotically 
converges to the optimal decision rule for maximizing detection power subject to false alarm 
constraints. 

Our work is also related to Cong et. al. [15] who consider dictionary learning methods. 
There 3D patches with specific temporal and spatial scale are chosen to match each scenario. A 
dictionary of representative patterns are learnt based on training video. Anomalies are declared 
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Figure 2: Overview of Anomaly Detection Algorithm. Motion descriptors are first extracted and 
quantized into small blocks. Spatio-Temporal filters at different scales are applied to obtain smooth 
estimates at each spatio-temporal location for each feature descriptor. Local KNN distance for each 
location is computed for training and test video. These local KNN distances are aggregated to produce 
a composite score for the test and training video. The composite scores are ranked to determine 
anomalies. 

if the test sample cannot be represented using a sparse set of dictionary patterns. It, is worth 
mentioning that we could incorporate their ideas into our scheme. Sparse decomposition for 
each spatio-temporal scale can be viewed as a feature vector that feeds into our local KNN 
block (see Fig. 7). 

Other work on video anomaly detection includes social force models by Mehran et. al. [37]; 
Normalized cut clustering by Zhong et. al. [64]; and trajectory based methods [3,25,57]. 

3.1.1     Video Locality Model and Feature Descriptors 

A video snippet x is typically a short segment of video.  Training data can consist of several 
For theoretical purposes we assume that the different snippets are snippets, x{ ' ,x (1)   T(2) .(") 

independent of each other. These snippets can be obtained by partitioning a longer video into 
short non-overlapping segments. 

For a video snippet, x, we associate a graph G = (V x T,E). The set V is associated 
with spatial locations and the set T is associated with temporal locations in the video snippet. 
Each location, v G V and time t G T is associated with a feature descriptor xvd- While it 
is theoretically possible to consider all pixel locations and temporal instants, we quantize into 
10 x 10 x 5 non-overlapping blocks. We call these blocks as atoms and we associate average 
values of features for each atom. Two atoms are connected if they are either temporal or spatial 
neighbors. The rest of development with regards to Mask and Markov assumptions follow as 
in the previous section (also see Fig. 4). 
Feature Descriptors: We now describe local features that are associated with each node 
(atom) of our graph. During feature extraction we compute a feature value for each pixel. 
Then, the pixel-level features are condensed into a multi-dimensional vector for each atom by 
averaging each feature component over all the pixels within the atom. We use the following 
local features: 



(1) Persistence: Activity is detected using a basic background subtraction method (as for 
instance in [6]). The initial background is estimated using median of several hundred frames. 
Then, the background is updated using the running average method. We flag each pixel as 
part of the background or foreground. Persistence, for an atom, is the percentage of foreground 
pixels in the atom. 
(2) Direction: Motion vectors are extracted using Horn and Schunck's optical flow method [9]. 
Motion is quantized into 8 directions and an extra "idle" bin is used for flow vectors with low 
magnitude. The feature for each atom is a 9-bin un-normalized motion histogram. The value 
for each bin corresponds to the number of pixels moving in the direction associated with the 
bin. 
(3) Motion Magnitude: Magnitude of motion vectors for each bin (except the idle bin) is 
computed and averaged over all the pixels in the atom. 

We thus have an 11-dhnensional descriptor for each atom.   While our setup is sufficiently 
general and admits other descriptors we use only these components. 

3.1.2     Algorithm for Video Anomaly Detection 

Recall we are given training video samples and a test video sample. To reduce real-time delay 
we breakup the test video sample into test video snippets, T)^\r}^2',. . . ,r/m'. Our task is to 
determine which of the test snippets contain an anomaly. For convenience, we partition training 
video in to snippets (x^\ ■ ■ ■ ,x^) each of the same length as a test snippet //. Our algorithm 
consist of three steps: 
(1) Local Scores: For any snippet y, which denotes either a test or training snippet, a local 
score at spatial location v, temporal instant, t, and at spatio-temporal scale s, is computed (see 
Algorithm 1). We choose an averaging spatio-temporal filter for simplicity in Algorithm 1. 

Algorithm 1 Score for y at location (v,t), at scale s. 

Input: Training Descriptors, {a-uj-}, Vj, u. r; K for KNN 
Output: dy,t(s) 

1: Filter at scale s: Xv,l <— Filtera{xujr) 
2: Distance Computation: dytttTj = d(yVtt,Xvtl), Vj 
3: Compute dVtt,(t) the £th nearest neighbor distance by sorting dv<ttT,j- 

4: Average:c4,t <- ^ X^=/c+i °W.M 
5: Normalize dy%t k- -£f-\ where Dv = max( dv%t 

(2) Snippet Score: Compute composite score for snippet, y, from local scores obtained in 
Algorithm 1: 

dy(s) = maxdy)t(s) 
v,t 

(3) Anomaly Detection: Rank test snippet, n at scale s: 

R^)=1-i:hiAJ 

Note that our feature descriptors-magnitude, direction, persistency—have different dynamic 
ranges.   Here we ranked separately with respect to the different descriptors.   Anomalies are 



declared if the rank for any descriptor falls below the desired false alarm threshold. Anomaly 
is localized by identifying the spatial and temporal locations in the snippet that contribute 
towards achieving the rank, Rs(r)). 
Tuning Parameters: Our algorithm requires only two parameters, namely, K for KNN dis- 
tance computation and scale s. It turns out that our results are generally robust to a wide range 
of K and is not an issue. In all our simulations we choose K to be about 50. Scale s can be 
dealt with in two possible ways: (1) Compute ranks over different scales and declare anomaly if 
the rank at some scale falls below the threshold. This procedure is conservative; Nevertheless, 
it controls false alarms at desired level asymptotically. (2) Use context to determine sensible 
temporal and spatial scales. This idea has been used before by Cong et. al. [15], who choose 
appropriate basis depending on the scenario. We choose small scales if small scale anomalies 
(abandoned or unusual objects) are important and choose larger scales for spatial anomalies 
such as U-turns or global change in behavior. 
Computational Issues: KNN distance computation is our main bottleneck. It scales linearly 
with the number of 3D bricks. To overcome this drawback recent approaches for computing 
approximate nearest neighbors based on locality sensitive hashing(LSH) [4] can be used. While 
we do not present results based on LSH here, in our preliminary experiments we have noticed 
that it can drastically reduce the computation time (scaling as fourth root of the number of 3D 
bricks) with little loss in performance. 

3.1.3     Experimental Results 

The UCSD Pedl dataset [54] contains 34 training clips of nominal patterns and 36 testing clips 
of various abnormal events, for example, bicycles, skaters, carts, etc. Each clip has 200 frames 
(20 seconds), with a 158 x 238 resolution. The challenge in this dataset is that the scenes are 
extremely crowded. To apply our algorithm, first we calculated optical flow and aggregated 
optical flow into histogram and magnitude features. We divided the videos into overlapping 
spatio-temporal blocks of 30pixelsx20pixelsx5frames (the block size was chosen such that each 
block does not contain too many objects which may interfere with one another) and then we 
applied our algorithm on snippets consisting of 5 frames. We also experimented with larger 
snippets and noticed little performance degradation. 

Some image results arc shown in Figure 3. Our algorithm can detect different types of 
anomalies. We compared our method with SRC proposed in [15] and MDT proposed in 
[35]. We also compared our method with Social force and MPPCA, etc. We found that [43] our 
method outperforms all the other algorithms. In Table 1, some evaluation results are presented: 
the Equal Error Rate (EER) (ours 16% < 19% [15]), and Area Under Curve (AUC) (ours 
92.7% > 86% [15]). From these comparisons, we can conclude that our algorithm outperforms 
other state-of-the-art algorithms. One additional advantage of our algorithm is that while 
providing frame level results, we can also provide anomaly localization by back-tracing to the 
block with max statistics. 

3.2     Multi-Camera Processing 

We have developed algorithms for finding pixel level correspondences between multiple cameras 
that have partially overlapping field of views. Our problem is motivated by the wide area 
surveillance applications. Wc present algorithms for settings where cameras have significantly 
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Figure 3:   Abnormal event detections for UCSD Pedl datasets. 
skaters are all well detected. 

The objects such as cars, bicycles, 

different orientations and zoom levels with respect to the scene. We propose a correspondence 
method based on activity features that, unlike photometric features, have certain geometry 
independence properties. The proposed method works is directed towards general surveillance 
scenarios, where prior calibration is not possible. In addition we seed techniques which require 
little processing power, and is communication resource aware. 

Tracking moving objects in video is a difficult problem and has been approached from many 
different angles. Some of the most successful techniques are particle filtering [26] and covariance- 
matrix techniques [40,53]. The latter techniques have proved robust to size scaling, pose change, 
illumination variations, while at the same time can be efficiently implemented using the integral 
image concept. The main challenges in their adoption will be in identifying covariance features 
to use (e.g., luminance and color can be tracked jointly with position, structure, velocity, 
etc.) and extending the approach to multiple cameras. While classical multiple-camera object 
tracking, dominant in computer vision literature, hinges on frame-to-frame correspondence 
between cameras, we propose to establish such correspondence using only the event-based 
representations [19,20]. Dynamic events, unless occluded, leave a unique signature in camera- 



Method EER AUC 

MPPCA [35] 40% 59% 
SF [35] 31% 67.5% 
MDT [35] 25% 81.8% 
Sparse [15] 19% 86% 
Ours 16% 92.7% 

Table 1: Quantitative comparison of our algorithm with [15] and [35]. EER is equal error rate and 
AUC is the area under ROC. 

acquired views regardless of the projection angle. The figure below demonstrates a number 
of correspondence experiments conducted. The task is to determine the mapping between 
locations across different cameras that share an overlapping field of view. 

While a car traveling on a highway induces similar luminance/color pattern changes on 
cameras viewing it, from different angles, it also induces similar patterns of dynamic events 
(e.g., sequences of idle and busy periods) across views. By seeking to associate dynamic events, 
instead of brightness patterns, across different views we bypass the difficult issues related to 
3-D geometry of viewing angles and high-bandwidth requirements. We expect the event-based 
correspondence to be also helpful in activity recognition on account of multiple sources observing 
the same target. A detailed description of this approach has appeared in [21] 

The general method heretofore is the so called scale invariant feature transform (SIFT) 
based method. The main difficulty is that when the cameras have significantly different ori- 
entations, SIFT method fails to produce meaningful results. However, activity features are 
geometrically independent demonstrating the effectiveness of the proposed method for a large 
class of surveillance scenarios. 

3.3    Search &: Retrieval 

The problem of exploratory search is motivated by the need for searching large video stores 
that are produced remotely. We are interested in finding activities that match a wide variety 
of queries. The need for this technology at this time is to enable Asymmetric and Irregular 
Warfare capability. Specifically, this aspect of the project is aimed at enabling analytics for wide 
area imagery. The goal is to enable searching of suspicious activity in cluttered environments 
while using low bandwidth and low storage in conducting search. This capability will allow a 
remote user to search terabytes of wide area imagery efficiently by operating on a compressed 
data space such as a hash table and enable pulling video that meets search criteria. 

3.3.1     Challenges 

The main challenges that arise in an Exploratory Search system in large-scale surveillance 
videos are listed below: 
1.)   Data lifetime: since video is constantly streamed, there is a perpetual renewal of video 
data. This calls for a model that can be updated incrementally as video data is made available. 
The model must also scale well with the temporal mass of the video. 
2.) Unpredictable queries: the nature of queries depends on the field of view of the camera, 
the scene itself and the type of events being observed.  The system should support queries of 

10 
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Figure 4: Occlusion map using left-right check and the proposed method: (a,d,g,j,m) Camera 1 
frames, (b,e,h,k,n) Camera 2 frames, (c,f,i,l,o) Segmentation results for Camera 1 frames: Red 
regions appear in Camera 1 frame but not in Camera 2 frame, blue regions are common in 
Camera 1 and Camera 2, green regions carry no motion. 
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different nature that ran retrieve both recurrent events such as people entering buildings and 
infrequent events such as cars performing U-turns, cars passing, car dismounts etc. 
3.)   Unpredictable event duration: events are unstructured.  They start anytime, vary in 
length, and overlap with other events. The system is nonetheless expected to return complete 
events regardless of their duration and whether or not other events occur simultaneously. 
4.)  Clutter and occlusions: Tracking and tagging objects in urban videos is challenging due 
to occlusions and clutter; especially when real-time performance is required. 
5.)  Airborne Videos: Airborne videos offer new challenges. They record wide-area imagery 
and use mega-pixel cameras.   On the other hand due to their constant motion registration 
is required before the footage can be subjected to video analysis.   Imperfect registration is a 
common issue and this requires methods that are robust to imperfections introduced in the 
registration process. 

Related Work: 
Image Based Approaches: There has been significant work in the literature on indexing images. 
Nevertheless, these approaches run into immediate problems in video search: the size of the 
data representation is of the same order (or larger) than the images themselves. Furthermore, 
some traditional approaches are based on image retrieval, which relies on matching a bag of 
features. In contrast video activities have a time component. Therefore, a meaningful match 
must not only be matched at the frame level but also coherent in time to capture semantically 
meaningful spatio-temporal relationships. Most video papers devoted to summarization, search 
and retrieval focus on broadcast videos such as music clips, sports games, movies, etc. These 
methods typically divide the video into "shots" [18,48,50,51] by locating and annotating key 
frames corresponding to scene transitions. The search procedure exploits the key frames content 
and matches either low-level descriptors [50] or higher-level semantic meta-tags to a given 
query [65]. Unfortunately, surveillance videos are fundamentally different from conventional 
videos. Most surveillance videos often contains many unrelated activities and events and so 
surveillance videos cannot be decomposed into "scenes" separated by key frames that one could 
summarize with some meta tags or a global mathematical model. Furthermore, surveillance 
video have no closed-caption or audio track one could rely on [65]. 
Video Clustering Based Approaches: This motivates approaches that attempts to index the 
dynamic content of the video in a way that is compatible with arbitrary upcoming user-defined 
queries. In that perspective, most scene-understanding video analytic methods work on a two- 
stage procedure: (1) learn patterns of activities via some clustering/learning procedure and 
than (2) recognize new patterns of activity via some classification stage. Since activities in 
public areas often follow some basic rules (think of traffic lights, highways, building entries, 
etc) the training stage often quantifies space and time into a number of states with transition 
probabilities. Common models are HMMs [34,38,41,55,62], Bayesian networks [12,59], context 
free grammars [56]. and other graphical model [36,49,57]. As for the classification stage, it is 
either used to recognize pre-defined patterns of activity [8,10,16,23,28,47,49,60,61] (useful for 
counting [16.52]) or detect anomalies by flagging everything that deviates from what has been 
previously learned [5,14,25,39,41,42,45]. We also note that methods working on global behavior 
understanding often rely on tracking [12,36,41,55,58] while those devoted to isolated action 
recognition relies more on low-level features [10,17,23,47,61]. Although these methods could 
probably be tuned to index the video and facilitate search, very few papers explicitly address 
this question.   One such paper is the one by Wang et al. [57].   There method decomposes 
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the video into clips in which the local motion is quantized into words. These words are than 
clustered into so-called topics such that each clip is modeled as a distribution over these topics. 
Queries being a combination of these topics, their search algorithm fetches every clip containing 
all of the topics mentioned in the query. A similar approach can be found in [24,34,59] 

But search techniques focused on global explanations operate at a competitive disadvantage: 
the preponderance of clutter (requirement four) in surveillance video makes the training step 
of scene understanding prohibitively difficult. Second, since these techniques often focus on 
understanding recurrent activities, they are unsuitable for retrieving infrequent events - this 
can be a problem, given that queries are unpredictable (requirement two). Finally, the training 
step in scene understanding can be prohibitively expensive, violating requirement three, large 
data lifetimes. 

3.3.2     Search Algorithm 

The concepts developed here accounts for the challenges posed by search in large surveillance 
videos and overcomes some of the drawbacks of traditional approaches. First, we extract a full 
set of features as we have no a priori knowledge of what query will be asked. Unlike scene 
understanding techniques, we have no training step; this would be incompatible with the data 
lifetimes and magnitudes of the corpus. Instead, we develop an approach based on exploiting 
temporal orders on simple features, which allows us to find arbitrary queries quickly while 
maintaining low false alarm rates. The results reported here is based on work that has already 
resulted in a number of publications [7,13,19,20,30,31,44]. 

We tackle the aforementioned challenges through the following sub-components: 
Efficient Representation: First, a capability for efficient representation and storage of the 
data must be developed; preferably, one which is smaller than the video, as even simple surveil- 
lance video can represent terabytes of data. The stored video must be sufficiently informative 
so that activities that could potentially of interest is preserved in the compressed representa- 
tion. In order to address these challenges arising from efficient representation, we propose to 
employ simple pixel-level features (Motion, Size, Color, Persistence), and rely on their spatio- 
temporal relationships to identify query matches. We propose to divide up incoming video into 
space-time cubes (and pyramids of those cubes, called trees), and compute amalgamations of 
pixel-level features for each cube and pyramid as illustrated in Fig 2. Each of these feature 
trees is hashed using locality sensitive hashing (LSH) for fast retrieval. This approach yields 
a highly efficient representation of the video; a 5-hour, 7 GB video is compressed to a 5 MB 
index. 
Query Representation: A query pattern must be generated, either directly or via exemplars, 
to search through the video. This query pattern must be sufficiently descriptive to account for 
semantically meaningful spatio-temporal relationships. An example of such a query interface is 
illustrated in Fig. 6. 
Search Algorithm: The search algorithm must efficiently find semantically meaningful matches 
to its query pattern in its data representation. To describe the search engine we will first present 
a block diagram view of the overall system. The main idea is to reduce the problem to the 
relevant data, and then reason intelligently over that data. This process is shown in Fig. 7. As 
data streams in, video is pre-processed to extract relevant features - activity, object size, color, 
persistence and motion.These low-level features are hashed into a fuzzy, light-weight lookup 
table by means of LSH [22]. We propose LSH because it can account for spatial variability and 
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Figure 5: (Left) Given anWxH xF video, documents are non-overlapping video clips each containing 
A frames. Each of the frames are divided into tiles of size D x B. Tiles form an atom when aggregated 
together over A frames. (Right) Atoms are grouped into two-level trees - every adjacent set of four 
atoms is aggregated into a parent, forming a set of partially overlapping trees. 

reduces the search space for a user's query to the set of relevant partial (local) matches. 
Our search engine optimizes over the partial matches to produce full matches; segments of 

video which fit the entire query pattern, as opposed to part of it. This optimization operates 
from the advantageous standpoint of having only to reason over the partial matches, which are 
the relevant subset of the video. In surveillance video, where a long time can pass without 
relevant action, this dramatically reduces the workload of the optimization algorithm. The first 
is a greedy approach which flattens the query in time. Second, a novel dynamic programming 
(DP) approach, exploits the causal ordering of component actions that makeup a query. DP 
reasons over the set of partial matches and finds the best full match. 

In our work we have developed GUIs to describe queries. The user enters the number of 
action components which the analyst wishes to find, and then draws the motion patterns for 
those actions. In order to recognize the complete set of actions in the video, we first get the 
set of matches to each individual action component. Because we have the video components 
hashed, this is an incredibly quick lookup - it is linear in the number of matching components. 
This is a convenient property, because action is frequently sparse in a video, and so scaling with 
the number of matches makes the actual length of the video irrelevant for performance. All 
that matters is the amount of action in the video. Once we are given a set of matches for each 
action component, the search for a full match can be formulated as a dynamic programming 
problem. We employ the Smith-Waterman algorithm for genome-matching to find the ranked 
set of matches in the video. 

Our system currently supports a combination of motion and object type queries. In the 
follow on project we would like to extend our approach to support longer term activities where 
the routes or motion attributes could be uncertain. These type of queries could involve activities 
corresponding multiple destinations over large time scales. We are also currently investigating 
how to extend our GUI based querying to represent complex motion patterns. In this context 
we are planning on moving out of the realm of manually-created queries into exemplar-based 
querying. Sometimes, the identifying structure of an action may be difficult to decipher for a 
user, but they could provide a number of examples ("I know it when I see it"). We propose to 
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(1) Select a predefined video section (3) Se|ect target properties 

(4) Select 
Query 

Type 

(5) Execute 
Query 

Figure 6:   The query creation GUI provides a straightforward way to construct queries.   The user 
draws each action component (shown in blue), and can additionally specify features. 

Task Frames Resolution # queries Retrievals False Retrievals Groundtruth Time/query 
1 
2 

500 
500 

3850 x 5950 
1951 x 5950 

29 
11 

33 
11 

1 
0 

33 
11 

1.73 sec. 
0.052 sec. 

Table 2: Results for processing the Airborne data. Car queries representing routes as long as 1500 
pels were examined. The specs of the computer used is Intel Core i5, @ 2.67 GHz 2.66 GHz, 4.0GB 
RAM. 

break down exemplar videos to produce action components for search. 

3.3.3     Results 

Table 2 summarizes the results obtained from processing the Airborne data. We examined 
routes as longs as 1500 pels. Examples of somes of the examined routes are shown in Fig. 8. 
Some of those routes undergo strong occlusion and others have many turns. Fig. 9 shows 
the ROC for the tasks 1 and 2. The Retrieval Score Threshold is the minimum path score 
(generated by Algorithm) required in order to declare this path as a search result. The points on 
Fig. 9 represent 20 different Retrieval Score Threshold values in the range of 0:1:20 (MATLAB 
notations). As seen by the generated ROC, our technique performs well by generating 0.85 
correct detection rate with 0.1 false alarms. 

This approach represents a fundamentally different way of approaching the video search 
problem.   Rather than relying on an abundance of training data or finely-tuned features to 

15 



. •.. LSH 
Index 1 <*• Video 

Feature 
Extraction 

Features Lightweight 

Index 

Inverted 

Index 
Lookup 

*•• 

Parti 

Query 
Creation 

1 
User Set of Query :eatures .1 J 

Commands 

Video Segments 

Matches 

Dynamic 
Programming 

Figure 7: From streaming video, low level features for each document are computed and inserted into 
a fuzzy, lightweight index. A user inputs a query, and partial matches (features which are close to 
parts of the query) are inserted into a dynamic programming (DP) algorithm. The algorithm extracts 
the set of video segments which best matches the query. 

differentiate actions of interest from noise, we rely on simple features and causality. In addition 
to the clear benefits in terms of a run-time which scales sub-linearly with the length of the video 
corpus, the simple features and hashing approach render the approach robust to user error 
as well as poor-quality video. The results demonstrate clearly that causality and temporal 
structure can be powerful tools to reduce false alarms. Another added benefit is how the 
algorithm scales with query complexity. Whereas algorithms such as topic modeling or a feature- 
based matching suffer as queries becomes more complex due to efforts to characterize the query. 
the two-step approach becomes more successful - the more action components in a query, the 
more likely it is to differentiate itself from noise. There is, of course, non-temporal structure that 
we have yet to exploit. Spatial positioning of queries, such as "The second action component 
must occur to the northeast of the first", or "The second action component must be near the 
first" is a simple attribute which may further differentiate queries of interest from background 
noise. This is not to say that the approach is not without its limitations. It requires that the 
activity being described contain discrete states, each of which is describable by a simple feature 
vocabulary. Complex actions like sign language or actions which are to fast or too small to be 
identified at the atom level will be difficult to search for. 
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